A case study of revising Pennsylvania’s science education standards

State science education standards can differ significantly from one another, and state standards are what directly affect science teachers, students, principals, and others. The states’ decisions are important, yet they are not well studied or understood.

A case study of the development of new science education standards in Pennsylvania, STEELS, is now available that may be useful as other states revise their standards. I did not want to include too many of my own opinions in the paper, focusing instead on the story in Pennsylvania. But there are useful lessons for other states, and to that end, here are a few additional reflections.

One of the ideas that was new to me and has potential in other states is to specify “contexts” in which certain performance expectations are important but that also allow teachers the flexibility to choose examples within those contexts. For example, two of the eight contexts in which technology and engineering standards are taught in Pennsylvania are “Computation, Automation, Artificial Intelligence and Robotics” and “Medical and Health-Related Technologies.”

Not only does the use of “contexts” put fewer handcuffs on science teachers (“teach exactly this”), but it also has a better chance of allowing curriculum and instruction to change, without revising standards, even as 21st century science and technology continue to change at a rapid rate. If students need to learn more about pandemics and vaccines, or about the benefits and risks associated with artificial intelligence, or about computer chips, teachers should not need to wait decades for science education standards to catch up and be revised. I am confident that there are creative ways for other states to incorporate “contexts” into their standards, as Pennsylvania has done.

Another important lesson learned is about the goals for science education. One need only read current newspaper headlines to realize how important it is that American students learn “science for citizenship.” A Framework for K-12 Science Education spells this out very well, specifying five “overarching goals” for science education, only one of which is to prepare students for college and careers. Three other goals for students in the Framework are: possessing sufficient knowledge of science and engineering to engage in public discussions on related issues; becoming careful consumers of scientific and technological information related to their everyday lives; and developing competencies to continue to learn about science outside school (e.g., media literacy skills to better evaluate information supposedly based on science). States need to write performance expectations that reflect these broader goals and Pennsylvania’s new standards are at least a small step in the right direction.

The Next Generation Science Standards spells out contradictory goals, as do many state science education standards. On the one hand, standards claim to be promoting “science for citizenship,” a goal that science teachers and their professional organizations strongly support (see the preceding post). On the other hand, the NGSS specifically states that the goal of the standards is far narrower, namely, to prepare students for college and careers. Pennsylvania’s STEELS standards seem to do a better job supporting the goal of teaching science for citizenship than most states do. Others should take notice.

Note: This entire blog can be downloaded as a single PDF file. See the link at the bottom of this page.

Additional note: To my surprise, an excellent video presentation of my paper was created using Google’s NotebookLM. It is shocking how good the video is, complete with images and narration, and especially because it takes little more than the push of a button to create these from any source, or sources. The YouTube video is HERE.

Some important conferences and reports

Since the last blog post, in June 2022, the Moore Foundation, an anonymous donor, and the Howard Hughes Medical Institute have supported important work about science education standards and about scientific misinformation. We appreciate their commitment, as well as the work of dozens of teachers, state and local policymakers, media experts and others who attended two invitational conferences leading to papers and reports, and contributed their thinking.

A conference was held at Stanford University in February 2023 called “Reinventing Scientific Literacy for an Age of Misinformation: NGSS 2.0?” Several papers and a website were among the results. One paper is a short Policy Brief by Jonathan Osborne (Kamalachari Professor of Science Education emeritus at Stanford) and Andy Zucker called Current Science Education Standards: The Good, the Bad and the Missing. A more extended discussion of recommendations in the Policy Brief is a paper by Osborne, Zucker, and Pimentel called Where Next for Science Education Standards?  

Those two papers and a number of others related to science education in an age of misinformation are available, free of charge, at https://sciedandmisinfo.stanford.edu/resources.

Another outcome of the Stanford conference was that the Howard Hughes Medical Institute provided support for a conference held in July 2023 to help answer the question: What should students learn in
K-12 science classes to help them better evaluate scientific information and resist misinformation? The result of the work at the conference was a short paper called Learning to Find Trustworthy Scientific Information by Andy Zucker and Erin McNeill (then CEO of the nonprofit Media Literacy Now). That paper identifies four areas in which science teachers can and should help students become lifelong learners of trustworthy science and resist misinformation. These areas are:

  • learn to evaluate the credibility of sources of scientific information;
  • learn more about the scientific enterprise, such as the nature and importance of a “scientific consensus”;
  • apply media literacy competencies when searching for information; and,
  • become more aware of one’s own thinking and behavior.

The next post on this blog will identify some of the impressive steps that have been taken by science teacher professional organizations, including NSTA and NABT, that are well aligned with the reports. These steps are a thoughtful response to the science misinformation crisis.