Comments from another expert reviewer

One of the experts who reviewed a draft of our white paper is Dr. Cary Sneider, an architect of the NGSS, and a member of the NGSS writing leadership team. His comments were extensive and generous, and began, “This is a nicely crafted article that should definitely be published.” Here are other highlights:

I like a lot of what you said about how the NGSS could be improved …. I especially resonate with your comments about distinguishing truth from fiction (and outright lies).

A decision that I lament,” he wrote about development of the NGSS, was to leave out a core idea identified in the Framework for K-12 Science Education (the template for the NGSS), namely, ETS2 – Links among engineering, technology, science, and society. “Some of what you say has been left out [of the NGSS] is included in this core idea,” he said, and we agree. In particular our concern that the NGSS has nothing to say about the relation between science or technology and public policy would be addressed had the NGSS incorporated this core idea from the Framework. As leader of the engineering team of NGSS writers, Sneider takes full responsibility for this missing piece, and hopes it will be reinstated when it’s time to update the NGSS.

At the same time, Sneider, a retired researcher, museum educator, and visiting scholar at Portland State University, expressed a number of reservations about the recommendations offered in the white paper. “It takes more than a decade to implement a new set of standards, especially if they are quite different from what was there before. Also, some states have just recently adopted new standards,” he wrote. So, in his view it is too early to make significant changes to the NGSS. Others have made similar comments, noting how long it takes to fully implement new standards.

Some of the missing pieces we identified in the NGSS, Sneider wrote, are intentionally absent, notably discussion of key principles of science teaching. Although he agrees that appropriate classroom pedagogy is essential for effective science education, the purpose of the standards is just to state what students should know and can do at the end of instruction, and not specify any specific curriculum materials or teaching methods, leaving that up to state officials to provide guidance.

Another of Dr. Sneider’s reservations is that “everyone wants to add topics they think are missing,” but authors of the NGSS were trying to focus on fewer important topics rather than on too many topics taught quickly and ineffectively. “Prior standards have had more than any teacher can do in a year,” he noted. Anyone who wants to add new topics to the NGSS during future updates should at the same time identify other topics that should be taken out to make space for the new material. Otherwise, the process that leads to bloated textbooks will just continue. He recommended that we add a section to our white paper about what could profitably be taken out of the NGSS to make room for the recommended additions.

The last area to highlight in his comments is that Dr. Sneider pointed to Appendix H and some of the “foundation boxes” in the main text of the NGSS as places where the nature of science is already highlighted. “I’m not sure why you feel it is not there,” he wrote.

These are thoughtful comments, which we appreciate. There are obviously large areas of overlap in our views of how to improve the NGSS, as well as significant differences. Rather than try to respond in this post to each of the reservations Dr. Sneider expressed, we will simply refer readers to the white paper. We hope that we provide a sound rationale for each of our suggestions, and as we wrote, we believe that our suggestions could be implemented “without significant disruption to the science curriculum.”

One expert’s comments on the white paper

We asked Professor John L. Rudolph to review a draft of the white paper. Professor Rudolph is chair of the Department of Curriculum and Instruction in the School of Education at the University of Wisconsin-Madison, where he educates future science teachers. His recent book How We Teach Science: What’s Changed and Why It Matters is a comprehensive history of American science education from the late nineteenth century to the present, making him exceptionally knowledgeable about how goals of science education have evolved over time.

After reviewing the paper, Professor Rudolph wrote:

“Thanks so much for sharing your white paper on revising the NGSS. I thought it was excellent. I have to say that it aligns almost exactly with my own critique of where science education is currently and where it’s heading under NGSS…. All the things you suggest I would heartily endorse. In fact, your outline of things neglected by NGSS closely parallels the syllabus of the science teaching methods course I teach every fall….


    I think that we’re on the cusp of a change that will begin to prop up the legitimacy and authority of science given the way science and truth have been so thoroughly denigrated in the public sphere of late. Your work will, I think, be part of helping push things in that direction…. It helps that the paper is so very clear and readable too.”

We were optimistic when we asked reviewers for their comments, but frankly we were not sure what experts would think of the white paper. These comments from Professor Rudolph, and others, were encouraging to us. Without widespread support it is unlikely that science education standards will be improved.

The NGSS is one piece of a bigger system

Several reviewers noted that education standards like the NGSS are only one influence on classroom instruction, whether in science or other subjects. We heartily agree! Their comments are an important reminder.

The quality of science teachers, the support they receive, the amount of time allocated to teaching science, the nature of high-stakes tests, support of STEM education by parents and the community—these are just a sample of other important influences on teaching and learning science. One reviewer wrote, “I agree with the ultimate goals for raising scientifically literate students … but I question what new and improved standards will do without addressing the current lack of infrastructure to implement them.”

The white paper does not claim that improving the NGSS is the one and only way to improve science education. At the same time, the NGSS promotes an excessively narrow vision of science and scientific literacy, so we should not be surprised when many teachers adopt that narrow vision.

As an example, too many parents believe that vaccines cause autism. Students graduating high school ought to know that the Centers for Disease Control and Prevention (the CDC) is an excellent source of information about vaccine safety and about many other public health issues. Similarly, students should learn that the Intergovernmental Panel on Climate Change (the IPCC) is a primary source of information about the causes and the impacts of climate change. Organizations like the CDC and the IPCC are central to NGSS practice #8, “obtaining, evaluating, and communicating” science-related information, bringing together experts from many institutions to synthesize and vet scientific findings. Such institutions are one key mechanism for determining scientific consensus, if and when it exists. Yet the NGSS makes no mention of any scientific institution. Nor does it explain how science helps to inform public policy—about vaccines, climate, food safety, or other issues. This is short-sighted.

Improving the NGSS is no guarantee that science instruction will improve, yet guidance from national standards cannot be ignored merely because other factors are important, too.

Andy and Penny