A few days ago Science Educator, a journal produced by the National Science Education Leadership Association (NSELA), published an article by me and Penny Noyce responding to the Call for Action for Science Education published last summer by the National Academies of Sciences, Engineering, and Medicine. The topic of the article is teaching science for citizenship, and the abstract reads as follows:
The 2021 publication of Call to Action: Building Opportunity for the Future by the National Academies of Sciences, Engineering and Medicine offers an opportunity to consider re-balancing K-12 science education in the United States. Besides a strong and detailed appeal to provide a more equitable education, the document calls for science education to focus more purposefully on developing an “informed citizenry that makes fact-based decisions in everyday life.” An approach to science education that reaches beyond scientific theories, facts and methods to consider how science interacts with everyday and civic life, including personal, economic, and ethical concerns, has been called a Vision II approach. Benefits of such an approach are likely to include greater student engagement, practice in constructive group discourse, exercise of critical thinking skills, and strengthening of civic skills needed in a democracy. We suggest pertinent resources and outline the relatively modest changes in policy, curriculum and instruction required at the national, state, district and classroom level to create a more effective approach to teaching science for citizenship.
The Science Educator article cites more than a dozen studies documenting the benefits of teaching science in this broader context. For example, to “inoculate” students against scientific misinformation, which has become so ubiquitous, teachers need to teach media literacy skills that are not “science,” per se. Also, almost everyone realizes that greater knowledge of the intersection of civics and science is essential to preserve American democracy; even Science magazine published an editorial last year recommending “a new spirit of cooperation between the science and civics education communities.”
This article includes an analysis of the Next Generation Science Standards, noting that,
The most significant component of the NGSS is its list of more than 200 Performance Expectations describing what students should know and be able to do at various grade levels. Those are the minimum expectations for students and the highest priorities for teachers. … They also set the boundaries of high-stakes testing.
Among these 200-plus Performance Expectations only a handful even hint at a broader view of scientific literacy, one that includes not only scientific findings, theories, and methods, but also personal, economic, and ethical concerns. In everyday life, decisions involving science are often made by non-scientists, who must consider a variety of perspectives beyond science. As the National Association of Biology Teachers has written in a Position Statement, excellent biology teachers “follow an integrated approach by incorporating other subjects, technology, society, and ethics.” All science teachers need to follow this advice if schools are going to develop “an informed citizenry that makes fact-based decisions in everyday life.” Teachers need to help students learn to learn about science even after they leave school and have no textbook to guide them.
There are innumerable science-related questions non-scientists need to answer, including politicians, city and town officials, and ordinary citizens. Who decides that COVID vaccines are safe, and how do I know they really are? Do vaccines cause autism? Will this advertised product really drain toxins from my body? Whose job was it to protect the public water supply in Flint, Michigan, and could that happen in my town? What are the pros and cons of buying a hybrid versus an electric car; how can I evaluate the advertisers’ claims; what am I willing to pay? Should I let my child play tackle football? Should I go to a tanning parlor before my beach vacation? How much should states and cities pay for clean energy and why, and should I support a particular ballot question about this?
The most important recommendation made in our article is that state and local policymakers explicitly set a high priority on teaching science in the context of societal and personal issues. Radical changes are not necessary. What is needed is a modest, feasible shift in priorities encouraged from the top down. Like adding yeast to bread dough, just a little bit can make a big difference in the result.
The full article is a NSELA members-only benefit. Check with your library or other science educators who may have access. You can also send an email to either Andy Zucker or Penny Noyce requesting a copy of the Science Educator article.
Andy